CGHR Data processing protocol

Version 1.0

December 15, 2008

Draft by Alan Cohen

Introduction

This document is meant to serve as a guide to how to properly clean, document, and quality-check data. Each data set is different, and some of the protocol here may not apply in certain cases. However, standardizing our procedure is essential for several reasons. First, it means that each of us can understand the others’ work, even if the original processor of the data no longer works here, and without having to constantly consult those who did the original work. Second, it ensures that there is a clear trail of what was done in case problems with the data are found later and errors need to be corrected. Third, it outlines the basic steps that need to be taken to ensure data quality, limiting the possibility that human oversight can create errors. For these reasons, this protocol should be followed as closely (but not rigidly) as possible.

Basic structure of the protocol

When a data set comes in, a series of steps should be followed to check for different sorts of errors. All previous versions of the data set should be saved. To do this, we’ll employ a sequence of numbered and labeled folders that will help clarify what state the data is in. In each folder, the appropriate documentation and programming code will be saved along with each new data set. I’ve set up some sample folders for a hypothetical data set “SampleData” at the following location on the common drive:

X:\DataSets\SampleData
This example can be kept as a template to be used for all new data sets.

Changes to the protocol

Changes to this protocol should be cleared with Prabhat and/or others and saved with an appropriate change in the version number.
Summary:

Step 1: Become familiar with the data

Step 2: Define desired format

Step 3: Collate/Compile into single data set

Step 4: Standardize coding within variables and check for strange values

Step 5: Use logic checks to confirm values and find aberrant values
Step 6: Check with data source to correct anything that can be
Step 7: Use external data to fill in missing data and check aberrant values

Step 8: Perform logic checks again on new data set

Step 9: Standardize coding to other CGHR data sets

Step 10: Compile Data Dictionary and tabulations

Step 11: Correcting errors
Details:

Step 1: Become familiar with the data

Before beginning any manipulations, it is important to become familiar with the data set in its raw form. What variables are there? How many are there, and what will this mean? Are they formatted consistently? How are they coded? It is important to look at any existing data dictionaries and the original survey form at this point.

Step 2: Define desired format

Think through the uses of the data set and how it should be organized to facilitate this. For each variable, define a desired coding system (CGHR standard when possible). Also consider whether multi-part data sets are best left separate or merged into a single file. They can be merged by observation, as in when individuals are nested within households, or they can be merged by column, as when the data come in separate files for each state or year. As a rule, it is good to merge smaller data sets by column whenever possible; whether or not to merge by observation depends on how unwieldy the full data set will become and on whether the separate parts of the data will be used more often in a merged or separate form. Sometimes it may be desirable to merge only certain parts of the data sets for easy identification – for example, even if individual and household level data are not merged, it may be good to include data from the household level such as district in the individual-level data sets.

Discuss these options with others and document the decisions taken and reasoning in an MS Word (or similar) file. Store this file with the title “Data formatting plan for [data set name] [month year]” in a folder called “1 [Data set name] Source Data [month year].”
Step 3: Collate/Compile into consolidated data sets when necessary
Merge the data sets in the way decided in step 2. Add additional variables as necessary to identify source data sets. Store the merged data sets and the code for how to merge them in a folder named “2 Merged Data for [data set name] [month year].” Label the coding files “Merging code for [data set name] [identifier when necessary, e.g. “household”] [month year].” Label the actual data set “Merged for [data set name] [identifier when necessary, e.g. “household”] [month year].” Store the data set in the CGHR standard format, SAS. [or other???]
Step 4: Standardize coding within variables and check for strange values

Check each variable for whether or not it agrees with existing data dictionaries. For example, if the variable is coded 1-2-9 for yes-no-missing, check for any values other than 1-2-9. Logic checks are not performed at this point, just checks for whether the variables take values beyond their theoretical ranges. Carefully document the discrepancies, and make decisions about how to deal with them. Correct any values that can be corrected, and use standard code to do this by variable when possible. For example, it is generally better to decide that all 3s in the above scenario will be coded as 9 than to make individual decisions for each case, especially when the data set is large. There may be exceptions to this when the reasons for the aberrant coding can be identified. Carefully document any changes made in 2 formats: as an MS Word file (“Coding standardization for [data set name] [month year].doc”) and as the code used to make the changes (“Coding standardization for [data set name].[program code] [month year]”). Store the revised data set as “Standardized [data set name] [month year]”. Keep all in a folder called “3 [Data set name] standardization[month year]”.
Step 5: Use logic checks to confirm values and find aberrant values

In this step, use other variables and distribution information to check for strange values. For example, sex should not be “Male” if cause of death was “Maternal mortality during childbirth.” Also, perform checks based on the distribution of the variable. Is it normally distributed? Are there outliers? Is there any reason to expect the outliers to be errors rather than actual values? Make decisions on how to deal with any discrepancies, consulting supervisors and others as necessary. Err on the side of not changing the data set when in doubt. The point is not to change every strange value, but to look for consistent errors that could cause a bias and eliminate them.
Again, document in an MS Word file (“Logic checks for [data set name] [month year].doc”) and as the code used to make the changes (“Logic checks for [data set name] [month year].[program code]”). Store the revised data set as “Logic-checked [data set name] [month year]”. Keep all in a folder called “4 [Data set name] logic checks[month year]”.
Step 6: Check with data source to correct anything that can be

Often, questionable patterns in the data can be fixed in consultation with the original data providers. Any strange values not addressed in the previous logic check should be fixed this way.

Again, document in an MS Word file (“Data source corrections for [data set name] [month year].doc”) and as the code used to make the changes (“Data source corrections for [data set name] [month year].[program code]”). Store the revised data set as “Data-source-corrected [data set name] [month year]”. Keep all in a folder called “5 [Data set name] source corrections[month year]”.
Step 7: Use external data to fill in missing data and check aberrant values

This step will not always be applicable, but it may be applicable for multiple external data sets. When necessary, repeat and use separate folders in order, numbered 6.1, 6.2, etc. Label folders “6 [Data set name] checked against [external data set name] [month year]”.
As a rule, do not replace data in the main data set with external data unless (a) it is missing in the main data set; (b) comparison has led to identification of a clear error in the main data set; or (c) the external data set is some kind of gold standard. In other words, if there is uncertainty as to which data set is correct, keep the original values so as to avoid compounding potential sources of error.

Document as above, naming MS Word and programming code files “[Data set name] check against [external data set name] [month year]” and storing in the appropriate folder.
Step 8: Perform logic checks again on new data set

When necessary, repeat step 6, labeling the folder “7 Second round [data set name] logic checks[month year]” and including “Second round” in the file names as well.
Step 9: Standardize coding to other CGHR data sets

Here, change the coding to make sure it agrees with other CGHR data sets (standard codes for different types of missing, yes/no, male/female, etc; see Appendix 1). Also implement any other changes to coding necessary for easy processing and analysis of the data set at this point. The folder is “8 CGHR-standardized [data set name] [month year]” and Word/Excel and programming files are called “CGHR standardization of [data set name] [month year]”.
Step 10: Compile Data Dictionary and tabulations
The data dictionary should include the variable name, the original question (from the survey, reproducing the format as closely as possible), the coding used in the final CGHR-standardized data set, a tabulation based on this coding, and also information about the distribution when available – is it normally distributed, log-normally distributed, etc. Details are specified in Appendix 2. This should be stored in a folder called “9 [Data set name] Final Form[month year]” and called “CGHR [data set name] data dictionary[month year].” The final data set is called “[Data set name] CGHR final[month year]”.
Step 11: Correcting errors

When errors are detected in the data set later (i.e., after completion of the final form), go back to the folder housing the last data set where the error originates. Fix the data set, keeping all documentation, and label any new files with “.2” and the date and year at the end. Go through all subsequent folders and use the existing code to re-clean and recreate the final version, saving all new versions of programs, data sets, and documentation with a “.2” and the date and year at the end. Leave all original files in place.
Subsetting

Often, a data set will come in with much more information than we need immediately, and we will not want to take the time to clean the whole thing. In this case, we may clean a subset of the data. The above protocol should be followed for the subset, but this should all be nested one layer lower in the main folder, in a separate folder just for the subset. It should be clearly labeled with something like “SampleData child subset - columns” that indicates whether the subset is a subset of columns, a subset of observations, or both. It is best to avoid too much subsetting, especially when the larger data set is expected to be of use in the near future. The idea is to take manageable chunks, not to pick and choose a few variables from here and there. In other words, it may not be possible to clean the whole data set initially, but it is better to clean an easily defined subset that is a bit larger than what might be initially needed rather than create later confusion when 10 people have taken very specific subsets.
Points for Discussion:

· Format of the data sets (SAS, Access, CSV, other)

· Whether to standardize coding for all CGHR data sets or leave as on questionnaires

· If we use standard codes, what should they be?

· How to code missing data

Appendix 1: Standard CGHR coding for variables

[We should also develop standardized variable names.]

Dichotomous variables:

· Always code as 0 and 1 (this facilitates calculating simple counts and other analyses)
· For Yes/No, 0=No and 1=Yes

· For Male/Female, 0=Female and 1=Male. Label Variable “Male” for clarity.
· For Alive/Dead, 0=Dead, 1=Alive. Label Variable “Alive” for clarity.
· For Urban/Rural, 0=Urban, 1=Rural. Label Variable “Rural” for clarity.
· For Presence/Absence of a condition, 0=Absence and 1= Presence

· For threshold dichotomizations of continuous variables, 0= lower values and 1=higher values

Categorical variables:

[Put here standard coding for religion, education, caste, etc.]

Continuous Variables:

· Age should be measured in years whenever data sets with different age metrics are merged. For example, in combing infant and adult age at death, a death at 10 days = 10/365 = 0.027 years.

· Age classes should be made in one of the three following schemes:

· <1,1-4,5-9,…,75-79,80+

· 0-4,5-9,…,75-79,80+

· 0-4,5-24,25-59,60+

Missing or problematic data:

· Use different codes for different types of missing. Avoid using numbers, which can be confused with actual data.
· “.u” means marked as “unknown” on the form

· “.b” means left blank

· “.n” means not applicable

· “.q” means the data point was deleted due to a quality check

· “.g” means general missing, when the reason for missingness is unknown

Appendix 2: Tabulations and information to provide in data dictionary
For all variables:

· Variable name

· Original question
· Number of each missing class

· Sample size including missing

· Sample size excluding missing
For dichotomous variables:
· Coding in the source data set (clearly marked to avoid confusion)

· Coding for 0s and 1s

· Number of 0s and number of 1s

· Percent of 0s and percent of 1s

For categorical variables:
· Coding in the source data set (clearly marked to avoid confusion)

· Coding for each class

· Number of each substantive class

· Percent of each substantive class

For count variables:
· Mean, median, minimum, maximum, and quartile counts
· If the number of count classes is small, a table with numbers at each count level

· Histogram (optional)

· Statistics on the distribution (optional)

For continuous variables

· Units

· Mean and standard deviation
· Median, minimum, maximum, and quartiles

· Any information on distribution (normal, log-normal, etc.)
· Histogram (optional)
